Cranfield

Perl: Doing something useful with the secrets of life

Structural Bioinformatics

Dr Lee Larcombe

MK Perl Mongers Technical Meeting 10/10/06

The Central Dogma of Biology

Cranfield UNIVERSITY

This is DNA

Gingerbread Baby

<u>୭୦୭</u>୦

Preheat oven to 375 degrees. In a large bowl, sift and mix together 3 cups flour 1/4 teaspoon salt 1 teaspoon baking soda 1 tablespoon ginger 1 teaspoon cinnamon 1/4 teaspoon ground cloves 1/4 teaspoon ground nutmeg In another bowl or mixer cream: 12 tablespoon (1 1/2 sticks) unsalted butter 3/4 cup brown sugar 1 egg Stir the dry ingredients into the creamed mixture Then add: 1/2 cup molasses 1 tablespoon vanilla

Let dough rest at least 2 hours, roll dough 1/4 inch thick and cut with a cutter Bake 7 to 10 minutes on a greased cookie sheet. Do not peek! Makes 2 dozen cookies.

This is DNA

-Cranfield

This is DNA

This is DNA <mark>r</mark> u G ñ **G** A Γ. +50 C

Cranfield

1 tcctggcatc agttactgtg ttgactcact cagtgttggg atcactcact ttccccctac 61 aggactcaga tctgggaggc aattaccttc ggagaaaaac gaataggaaa aactgaagtg 121 ttacttttt taaagctgct gaagtttgtt ggtttctcat tgtttttaag cctactggag 181 caataaagtt tgaagaactt ttaccaggtt ttttttacg ctgccttgat atacactttt 241 caaaatgctt tggtgggaag aagtagagga ctgttatgaa agagaagatg ttcaaaagaa 301 aacattcaca aaatgggtaa atgcacaatt ttctaagttt gggaagcagc atattgagaa 361 cctcttcagt gacctacagg atgggaggcg cctcctagac ctcctcgaag gcctgacagg 421 gcaaaaactg ccaaaagaaa aaggatccac aagagttcat gccctgaaca atgtcaacaa 481 ggcactgcgg gttttgcaga aacaataatgt tgatttagtg aatattggaa gtactgacat 541 cgtagatgga aatcataaac tgactcttgg tttgatttgg aatataatcc tccactggca

The Central Dogma as Perl !

\$sequence =~tr/ACGT/ACGU/;

Cranfield UNIVERSITY

mRNA

Second position

		U	С	A	G	
	U	UUU phe UUC phe UUA leu UUG leu	UCU UCC _{ser} UCA ^{uCG}	UAU UAC UAA Stop UAG Stop	UGU UGC Cys UGA Stop UGG trp	U C A G
on (5'-end)	с	CUU CUC CUA ^{leu} CUG	CCU CCC pro CCA ^{pro} CCG	CAU CAC his CAA CAG gln	CGU CGC <i>arg</i> CGA CGG	
First positi	A	AUU AUC ile AUA AUG met	ACU ACC ACA ACG	AAU AAC AAA AAG	AGU AGC AGA AGG arg	
	G	GUU GUC GUA GUG	GCU GCC GCA ^{ala} GCG	GAU GAC GAA GAG <i>glu</i>	GGU GGC GGA ^{gly} GGG	U C A G
			Initiation	Term inat	ion	

Translation uses the famous...

→ Protein

'genetic code'

Translation

Cranfield

Protein

mRNA

codons = (GCU => A, GCC => A, GCA => A, GCG => A,UGU => C, UGC => C,GAU => D, GAC => D,GAA => E, GAG => E, UUU => F, UUC => F,GGU => G, GGC => G, GGA => G, GGG => G,CAU => H, CAC => H, AUU => I, AUC => I, AUA => I, AAA => K, AAG => K, UUA => L, UUG => L, CUU => L, CUC => L, CUA => L, CUG => L, AUG => M, AAU => N, AAC => N,CCU => P, CCC => P, CCA => P, CCG => P,CAA => O, CAG => O,CGU => R, CGC => R, CGA => R, CGG => R, AGA => R, AGG => R, UCU => S, UCC => S, UCA => S, UCG => S, AGU => S, AGC => S,ACU => T, ACC => T, ACA => T, ACG => T, GUU => V, GUC => V, GUA => V, GUG => V,UGG => W, UAU => Y, UAC => Y, UAA => x, UAG => x, UGA => x,);

while (\$rna=~s/(...)//){
 \$protein = \$protein.\$codons{\$1};

This is Protein

MTTPTL IVTPPSPPAP SYSANRVPQP SLMDKIKKIA AIASLILIGT IGFLALLGHL VGFLIAPQIT IVLLALFIIS QREVGSLKEI NFMLSVLQKE LAGNALYLOK TANLHLYODL DNYKGFESLL FLHLSKEFAT TSKDLSAVSQ DFYSCLOGFR RKLFSQEIIA LKGSVASLRE DEYKNSTEEM EIRFLTPLAE GQLSQLSKTL EVRRLAHNQO SLTVVIEELK TIRDSLRDEI TSQIALQRKE SSDLCSQIRE TLSSPRKSAS PSTKSS

This is Protein

This is Protein

Protein has 'levels' Of Cranfield

etructura

Knowledge of structure can help us

Design diagnostic tests Design drugs Understand diseases Produce Vaccines

Very difficult to predict UNIVERSITY structure

The chemical bond between each subunit can take either of two orientations ...

MTTPTL IVTPPSPPAP SYSANRVPQP SLMDKIKKIA AIASLILIGT IGFLALLGHL VGFLIAPQIT IVLLALFIIS LAGNALYLQK TANLHLYQDL QREVGSLKEI NFMLSVLQKE FLHLSKEFAT TSKDLSAVSQ DFYSCLQGFR DNYKGFESLL DEYKNSTEEM RKLFSQEIIA LKGSVASLRE EIRFLTPLAE EVRRLAHNQQ SLTVVIEELK TIRDSLRDEI GQLSQLSKTL TSQIALQRKE SSDLCSQIRE TLSSPRKSAS PSTKSS

There are 2²⁷² possible structures for this protein - only 1 is is the real one.

We don't understand all the

rules!

Cranfield

Computers are fast - but its still hard

It's amazing that not only do proteins self-assemble -- fold -but they do so amazingly quickly: some as fast as a millionth of a second. While this time is very fast on a person's timescale, it's remarkably long for computers to simulate.

In fact, it takes about a day to simulate a nanosecond (1/1,000,000,000 of a second). Unfortunately, proteins fold on the tens of microsecond timescale (10,000 nanoseconds). Thus, it would take 10,000 CPU days to simulate folding -- i.e. it would take 30 CPU years! That's a long time to wait for one result!

Cranfield

Specifically designed by IBM to tackle problems in protein folding & structure optimisation

Reported cost > \$100 million

Currently the world's fastest computer (360 teraflops)

G-protein coupled receptors in a membrane

(GPCRs)

represent more than half the current drug targets and a market of tens of billions of dollars annually

congestive heart failure, hypertension, stroke, cancer, ulcers, allergies, asthma, anxiety, psychosis, migraines, Parkinson's

disease

Cranfield

Can prediction be simpler?

Can try to predict the 3D final structure normally necessary to understand function

Or

Can just try and predict partial structure or surface from sequence to suggest targets for interaction

Antibodies

A simpler prediction

Basic methods of secondary structure prediction rely on statistical applications of 'propensity'

The propensity/inclination/tendency of protein subunit to be in a particular structure based on observation of known datasets

The Alpha Helix

Cranfield

The Beta Sheet

P = propensity

I = subunit of interest

n[I] = number of subunits [I] in the database

n = total number of subunits in the database

n[I]^[s] = number of subunits [I] in state of interest i.e. helices

 $n^{[s]}$ = number of all subunits in the database in the state of interest.

So, the helical propensity for subunit Alanine where:

- the number of alanines in the database is 1640,
- and the total number of subunits in the database is 10136,
- and where the number of alanines found in helices is 124,
- and the total number of subunits found in helices is 1246, would be 0.61

Sliding windows

Propensity values are often assigned using sliding window methods

Theory that neighbouring subunits affect local structure

Example - Hydrophobicity

Hydro - phobic = water - hating

Some subunits do not exist happily in water - often on the inside of proteins

Some like water - take up positions on the outside of proteins.

This is also exploited in some structural elements such as helices

We can use a hydrophobicity propensity scale ...

Cranfield

Hydrophobicity Hash

%hydropathies = (A => 1.8, C => 2.5, D => -3.5, E => -3.5, F => 2.8, G => -0.4, H => -3.2, I => 4.5, K => -3.9, L => 3.8, M => 1.9, N => -3.5, P => -1.6, Q => -3.5, R => -4.5, S => -0.8, T => -0.7, V => 4.2, W => -0.9, Y => -1.3);

Each of the 20 protein subunits is assigned a value representing its hydrophobicity

Sliding window

@array = windowify(\$sequence);

```
sub windowify {
          (array = ();
          startqap = int (7 / 2);
          $startpoint = 0;
          for (\$h = \$startgap; \$h < (\$seqlength - \$startgap); \$h++) {
                    $startpoint = $h - $startgap;
                    $array[$h] = calckds(substr($sequence, $startpoint, $window));
          return @array;
};
sub calckds {
          $str = shift;
          @windowsection = unpack("A1" x length($str), $str);
          foreach $aa (@windowsection) {
                    $val += $hydropathies{$aa};
          $val = ($val / $window);
          $val = int($val*1000)/1000;
          return $val;
};
```

Result

-Cranfield

Sequence	MTTPTLIVTPPSPPAPSYSANRVPQPSLMDKIKKIAAIASLILIGTIGFLALLGHLVGFL
surface	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
Sequence	IAPQITIVLLALFIISLAGNALYLQKTANLHLYQDLQREVGSLKEINFMLSVLQKEFLHL
surface	SSSS-SSSSSSSSSSSSSSSSSSSSSSSSSS
Sequence	SKEFATTSKDLSAVSQDFYSCLQGFRDNYKGFESLLDEYKNSTEEMRKLFSQEIIALKGS
surface	SSSSSSSSSSSSSSSSSSSSSSSSSSSS
Sequence	VASLREEIRFLTPLAEEVRRLAHNQQSLTVVIEELKTIRDSLRDEIGQLSQLSKTLTSQI
surface	-SS-SSSSSS-SSSSSSSSSSSSSSSSSSSSS
Sequence	ALQRKESSDLCSQIRETLSSPRKSASPSTKSS
surface	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

My Research

Taken several propensity- style methods and applied them together

Tailored analysis specifically for identifying target regions to bind antibodies

Appear to be able to predict suitable regions > 90% of the time

What now?

Analysed all 27,960 known human protein sequences - took 33 minutes (2Ghz MacBook)

Also several important bacterial species

Made a web- based tool and database for all this information.

Cranfield

. . . .

Main Menu

Organism Databases Cancer Gene Search Oustom Analysis About this project Home

Database Search Search for proteins and sequences

This form can be used to search the database of protein sequences and the determined available binding regions. You can search either by name, genbank accession or short sequence. This is not a BLAST - it is literal sequence.

	Database Reco	rd						
ganism Databases	Database nect	10						
ncer Gene Search	Record for sequer	ice: 15604838						
stom Analysis								
out this project	Sequence Name	tain A						
me	Inclusion Memorane Pro	Item A						
	Species							
	Chlamydia trachomatis I	D/UW-3/CX						
	Genbank Identifier	15604838	to link to the	enbank record	click> here			
	Genbank Accession	NP_219622.1		,				
	Commence I constitu	070						
	Sequence Length:	273						
	Sequence							
	MTTPTLIVTPPSPPAPSYSANRVPQPSLMDKIKKIAAIASLILIGTIGFLALLGHLVGFL IAPQITIVLLALFIISLAGNALYLQKTANLHLYQDLQREVGSLKEINFMLSVLQKEFLHL SKEENTISKDI SAUSODEVSCI OCEPDNYKCEESII DEVKNSTEENDKI ESOEIIADIKC							
	CKEENDERDI CAUCODES	SNALYLQKTANLHL	YQDLQREVGSLK	EINFMLSVLQKE	FLHL			
	SKEFATTSKDLSAVSQDF SVASLREEIRFLTPLAEE	SNALYLQKTANLHL SCLQGFRDNYKGF VRRLAHNQOSLTVV	YQDLQREVGSLK ESLLDEYKNSTE IEELKTIRDSLR	EINFMLSVLQKE EMRKLFSQEIIA DEIGQLSQLSKT	FLHL DLKG TLTSO			
	SKEFATTSKDLSAVSQDF SVASLREEIRFLTPLAEEV IALQRKESSDLCSQIRET	GNALYLQKTANLHL YSCLQGFRDNYKGF VRRLAHNQQSLTVV LSSPRKSASPSTKS	YQDLQREVGSLK ESLLDEYKNSTE IEELKTIRDSLR S	EINFMLSVLQKE EMRKLFSQEIIA DEIGQLSQLSKT	FLHL DLKG TITSQ			
	SKEFATTSKDLSAVSQDF SVASLREEIRFLTPLAEEV IALQRKESSDLCSQIRET	SNALYLQKTANLHL YSCLQGFRDNYKGF VRRLAHNQQSLTVV LSSPRKSASPSTKS	YQDLQREVGSLK ESLLDEYKNSTE IEELKTIRDSLR S	EINFMLSVLQKE EMRKLFSQEIIA DEIGQLSQLSKT	FLHL DLKG LTSQ			
	SKEFATTSKDLSAVSQDFY SVASLREEIRFLTPLAEEV IALQRKESSDLCSQIRETI	SNALYLQKTANLHL YSCLQGFRDNYKGF VRRLAHNQQSLTVV LSSPRKSASPSTKS	YQDLQREVGSLK ESLLDEYKNSTE IEELKTIRDSLR S	EINFMLSVLQKE EMRKLFSQEIIA DEIGQLSQLSKT	FLHL DLKG TJTSQ			
	SKEFATTSKDLSAVSQDFS SVASLREEIRFLTPLAEEV IALQRKESSDLCSQIRET	ALYLQKTANLHL SCLQGFRDNYKGF VRRLAHNQQSLTVV LSSPRKSASPSTKS antigens for this	YQDLQREVGSLK ESLLDEYKNSTE IEELKTIRDSLR S protein.	EINFMLSVLQKE EMRKLFSQEIIA DEIGQLSQLSKT	FLHL DLKG LTSQ			
	Below are the suitable Sequence	ALYLQKTANLHL YSCLQGFRDNYKGF VRRLAHNQQSLTVV LSSPRKSASPSTKS antigens for this	YQDLQREVGSLK ESLLDEYKNSTE IEELKTIRDSLR S protein. ydrophobics	EINFMLSVLQKE EMRKLFSQEIIA DEIGQLSQLSKT Charged	Solubility	black		
	Below are the suitable Sequence CSQIRETLSSPRKSA	ANALYLQKTANLHL YSCLQGFRDNYKGF VRRLAHNQQSLTVV LSSPRKSASPSTKS antigens for this H	YQDLQREVGSLK ESLLDEYKNSTE IEELKTIRDSLR S protein. ydrophobics 3	EINFMLSVLQKE EMRKLFSQEIIA DEIGQLSQLSKT Charged 4	Solubility	blast		
	Below are the suitable Sequence CSQIRETLSSPRKSA	ANALYLQKTANLHL YSCLQGFRDNYKGF VRRLAHNQQSLTVV LSSPRKSASPSTKS antigens for this H	YQDLQREVGSLK ESLLDEYKNSTE IEELKTIRDSLR S protein. ydrophobics 3 4	EINFMLSVLQKE EMRKLFSQEIIA DEIGQLSQLSKT Charged 4 5	Solubility 1	blast blast		
	Below are the suitable Sequence CSQIRETLSSPRKSA DLCSQIRETLSSPRK ESSDLCSQIRETLSS	ALYLQKTANLHL YSCLQGFRDNYKGF VRRLAHNQQSLTVV LSSPRKSASPSTKS antigens for this H	YQDLQREVGSLK ESLLDEYKNSTE IEELKTIRDSLR S protein. ydrophobics 3 4 3	EINFMLSVLQKE EMRKLFSQEIIA DEIGQLSQLSKT Charged 4 5 4	Solubility 2 1 -2	blast blast blast		
	Below are the suitable Sequence CSQIRETLSSPRKSA DLCSQIRETLSSPRK KESSDLCSQIRETLSS	ALYLQKTANLHL YSCLQGFRDNYKGF VRRLAHNQQSLTVV LSSPRKSASPSTKS antigens for this H	YQDLQREVGSLK ESLLDEYKNSTE IEELKTIRDSLR S protein. ydrophobics 3 4 3 3 3	EINFMLSVLQKE EMRKLFSQEIIA DEIGQLSQLSKT Charged 4 5 4 5	Solubility 2 1 -2 -1 -1	blast blast blast blast		
	Below are the suitable Sequence CSQIRETLSSPRKSA DLCSQIRETLSSPRK ESSDLCSQIRETLSS KESSDLCSQIRETLSS KESSDLCSQIRETLSS	ANALYLQKTANLHL YSCLQGFRDNYKGF VRRLAHNQQSLTVV LSSPRKSASPSTKS antigens for this H	YQDLQREVGSLK ESLLDEYKNSTE IEELKTIRDSLR s protein. ydrophobics 3 4 3 4 3 4	EINFMLSVLQKE EMRKLFSQEIIA DEIGQLSQLSKT Charged 4 5 4 5 5 5	Solubility 2 1 -2 -1 1 1	blast blast blast blast blast		
	Below are the suitable Sequence CSQIRETLSSPRKSA DLCSQIRETLSSPRK ESSDLCSQIRETLSS KESSDLCSQIRETLSS KESSDLCSQIRETLSS KESSDLCSQIRETLSS KESSDLCSQIRETLSS KESSDLCSQIRETLSS SCALSSPRKSASPST	ANALYLQKTANLHL YSCLQGFRDNYKGF VRRLAHNQQSLTVV LSSPRKSASPSTKS antigens for this H	YQDLQREVGSLK ESLLDEYKNSTE IEELKTIRDSLR s protein. ydrophobics 3 4 3 4 3 4 3 3 4 3 3	EINFMLSVLQKE EMRKLFSQEIIA DEIGQLSQLSKT Charged 4 5 4 5 4 5 4	Solubility 2 1 -2 -1 1 2	blast blast blast blast blast blast blast		