
SQL (and MySQL)

Useful things I have learnt,
borrowed and stolen

MySQL quirks

MySQL truncates data

MySQL quirks

MySQL truncates data

 CREATE TABLE pets (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 type CHAR(3) NOT NULL,
 PRIMARY KEY id (id)
);

MySQL quirks

MySQL truncates data

 CREATE TABLE pets (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 type CHAR(3) NOT NULL,
 PRIMARY KEY id (id)
);

 INSERT INTO pets VALUES (1, 'caterpillar');

MySQL quirks

MySQL truncates data

 CREATE TABLE pets (
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 type CHAR(3) NOT NULL,
 PRIMARY KEY id (id)
);

 INSERT INTO pets VALUES (1, 'caterpillar');

 Query OK, 1 row affected, 1 warning (0.02 sec)

MySQL quirks

MySQL truncates data

 SELECT * FROM pets;

 +----+------+
 | id | type |
 +----+------+
 | 1 | cat |
 +----+------+
 1 row in set (0.00 sec)

MySQL quirks

MySQL truncates data
There is a solution!

MySQL quirks

MySQL truncates data
There is a solution!
Make MySQL use strict

MySQL quirks

MySQL truncates data
There is a solution!
Make MySQL use strict
In your my.cnf / my.ini

 sql-mode=STRICT_ALL_TABLES

MySQL quirks

MySQL allows zero dates

MySQL quirks

MySQL allows zero dates

 ALTER TABLE pets ADD COLUMN
date_bought DATETIME NOT NULL;

MySQL quirks

MySQL allows zero dates

 ALTER TABLE pets ADD COLUMN
date_bought DATETIME NOT NULL;

 SELECT * FROM pets;
 +----+------+---------------------+
 | id | type | date_bought |
 +----+------+---------------------+
 | 1 | cat | 0000-00-00 00:00:00 |
 +----+------+---------------------+
 1 row in set (0.00 sec)

MySQL quirks

MySQL allows zero dates
There is a solution!

MySQL quirks

MySQL allows zero dates
There is a solution!
In your my.cnf / my.ini

 sql-mode=NO_ZERO_DATE

MySQL quirks

MySQL allows zeroes IN dates

MySQL quirks

MySQL allows zeroes IN dates
Even with NO_ZERO_DATE

MySQL quirks

MySQL allows zeroes IN dates
Even with NO_ZERO_DATE
There is a solution!

MySQL quirks

MySQL allows zeroes IN dates
Even with NO_ZERO_DATE
There is a solution!
In your my.cnf / my.ini:

 sql-mode=NO_ZERO_IN_DATE

MySQL quirks

But you want to stop truncation, and zero dates, and zeroes
in dates?

MySQL quirks

But you want to stop truncation, and zero dates, and zeroes
in dates?
There is a solution!

MySQL quirks

But you want to stop truncation, and zero dates, and zeroes
in dates?
There is a solution!

 sql-mode=TRADITIONAL

Why use MySQL?

Free
Fast
Full-text searching
Scalable
Popular
Flexible
Well supported
It's already there
Look at the alternatives

The alternatives

Oracle
Enterprise Edition starts at $40,000
Express Edition is free

4GB of user data, use up to 1GB of memory, and use
one CPU on the host machine.

Worth looking into if:
your apps aren't going to grow
your apps are going to grow really big

The alternatives

SQL Server
Enterprise Edition costs around $25,000
Standard Edition c.$6000
Express Edition is free

4GB of user data, use up to 1GB of memory, and use
one CPU on the host machine.

Worth looking into if:
your apps aren't going to grow
your apps are going to grow really big
you're using a Microsoft platform

The alternatives

PostgresSQL
Open source
Multi-platform
I've never used it but have heard those that have say things
like,

 "If Postgres is your answer, you're asking the wrong
 question "

Rumour is, it's as quirky as MySQL, in different ways
But less popular

The alternatives

IBM DB2
Anyone?

The alternatives

SQLite
Free
Fast
Small
Limited functionality
Great for

Simple, small, datasets
High frequency requests
Acting as a results cache between an application and a
larger database

Some groovy SQL

Finding all the rows in a table that have non-unique values

 CREATE TABLE books (
 id INT AUTO_INCREMENT,
 title VARCHAR(255) ,
 author VARCHAR(255),
 PRIMARY KEY id (id)
);

 INSERT INTO books VALUES
 (null, 'Perl Best Practices','Conway'),
 (null, 'Object Oriented Perl','Conway'),
 (null, 'Perl Best Practices','Conway');

Some groovy SQL

Use a sub-query:
 SELECT * FROM books WHERE title IN (
 SELECT title FROM books
 GROUP BY title HAVING COUNT(*) > 1
); +----+---------------------+--------+
 | id | title | author |
 +----+---------------------+--------+
 | 1 | Perl Best Practices | Conway |
 | 3 | Perl Best Practices | Conway |
 +----+---------------------+--------+
 2 rows in set (0.10 sec)

Making life easier: DBIx::Class

Some say DBIx::Class
I don't like it
Too much abstraction
Need to learn a new meta-language
Where clauses are just not supported beyond the basics
End up configuring packages when you change your
schema
I just don't get what I'm supposed to gain from it

Making life easier: SQL::Abstract

Great for compiling 90% of the SQL statements
Great for dealing with inserts and updates

 $sql = SQL::Abstract->new();

 my $values = { type => 'dog', date_bought => '2008-09-09
00:00:00' };

 my ($insert,@binds) = $sql->insert('pets',$values);
 my ($update,@binds) = $sql->update('pets',$values);

Making life easier: ORLite

Object-relation system specifically for SQLite

 package Foo;

 use strict;
 use ORLite 'data/sqlite.db';

 my @dog = Foo::pets->select(
 'where type = ?',
 'dog',
);

Good for simple datasets

Thanks to

Smylers
http://use.perl.org/~Smylers/journal/34246

