Using Moose to build an Object Oriented Application

Moose Quick-Ref Card

A modern object system for Perl 5

Exported Functions

e;
Turns on strict and warnings.
Exports confess and blessed.

‘superclasses
Moose's alternative to use base.
Note that it will re-set @1SA.

;- : soptions J
Consume roles (interfaces) as an
alternative to extending classes.

shame > sOoptlions
Install an attribute into this class,
See below for soptions details.

2O0 oOns

1 et o J .l.' - | & ¥~
Clone and extend an attribute.

sub {..}

sub f ..:p

afte: Enames => sub ‘»
Extend a superclass’s method. around is
passed ($coderef, $self, Bargs).

r() }

$name > 8sub { super())
of a method.

Explicit override
ame => sub Lnner() }

The inverse of override/super.

Output object using bData: : Dumper.

Attribute Constructor Options

Creates a read /write or read-only
accessor. If you forget this option, no

accessor will be created.

Stype name *$ta|$thb|..
Set up run-time type checking.
See below for $type name details.

I e

Value’s class must consume Srole.

18 S Sname

Extend attribute via a metaclass.

raits => [€role names]
Apply roles to attribute’s meta-object.

Allow coercion to $type name on storage.
See below for details.

> 110
Value must be supplied to the
constructor and always exist.

. 1 ()
Value is stored as weakened ref
(note: conflicts with coercion).

lazy => 1|0
Don't create a value from the (required)
default until accessed.

ante AdAavef -~ 1
auto Qe (.)

Accessor will dereference array or hash
references (isa must be set).

gqger = 8ub {..}
Code to run after attribute i1s set. Is
passed (Sself, Snew _val).

> Sval sub{ []1]|{}|sub{-} }
Default value to initialize attribute.

The outer sub{} 1s passed $self.

icat 1am

Method $name will perform a basic
defined test on the attribute.

o

reader]c." tericlearer > Ss8Sub name
Provide your own subroutines to read
from, write to, and uninitialize the stored
value,

bulilder > $sub name

Separate method to return default value.
Better for subclassing.

azy build >
Sets lazy, required, predicate (has_S$name),
clearer (clear_S$name) and builder
(_build_$name).

101 » sub Frein

Provide your own read /write accessor.
init arg => $name

Name for attribute when passed into the

constructor, or disallowed if undef.

lary|%hsh|gr//|$role|sub{..}
Sets up methods which delegate to
methods of the value's class.

Requires that isa be set.

Data Type Constraints

The built-in type-constraints are:

(use with care)

(means “is loaded” and isa)

To define your own, global types:
use Moose::Util::TypeConstraints;

saqge { Sme g98aqge 3

A new type-constraint with no parent.

3isage { Smessage };

Subtype of an existing type.

It 1s recommended that you always quote
S$name. Moose checks $parent constraints
first. The block of <code> must evaluate to
true. A $message 1s optional, and used in
confess if the constraint check fails.

Data Type Constraints, continued. ..

1ame » Bvalues;

Constraining to a list of str values.

'TypeName*

L
J I

Idiomatic check of value’s class.

->1sa('SomeClass

someClass’'):

Magical version of above.

(1sSa

Data Type Coercions

» via { <other code> };

Instruct Moose in how to coerce data

from $some_type to $type. You can chain
alternative coercions as shown.

Coercion <code> is passed a value in § and
returns the value to be stored.

Choice Related Modules

Class::MOP
Moose::Exporter
MooseX::AtributeHelpers
MooseX::Getopt
MooseX::Object::Pluggable
MooseX::Singleton
MooseX::Storage
MooseX::Types

Other Tidbits

use Moose::Role;
A role (or interface or trait) can only be

consumed, not instantiated directly.

1 .-;:]‘1‘,.«;‘ ‘.1-v->4f"l,_,:j:;j;

Methods which must be implemented by
the consuming class.

my Smeta PACKAGE _->meta;
Get the cached metaclass for a package.

immutable;

oose: :Role;
Finalize the class to make it faster,
and unimport the Moose ‘keywords’.

The suILD method of each class will be
executed after the type constraint checks
by the constructor, and is passed
($self, Sparams).

Before that, BUILDARGS is passed €params
to convert into the Sparams hashref.

The pemoL1sH method of each class 1s
called at object destruction.

Meta class and Trait namespaces:
Mo« s sMeta::Attribute: :Cust s:Smetaclass

Mata::$type::Custom::Trajit::Strait

This quick-ref card is © Oliver Gorwits
2009-01-07 version 3.8
http:/ /tinyurl.com/moosequickref
Thanks to many people from #moose

What is Moose ?

The goal of Moose is to increase programmer
productivity by providing “proper” OO syntax
and Object model which are missing from
perl5.

It does the grunt work for you and allows the

programmer to concentrate on the task at
hand.

An Example
A “Traditional” OO Perl Class

Package ClassName;
sub new {
my $class = shift;
my $self = {
_an_attribute => shift,
_another_attribute => shift,
};
bless $self, $class;
7

package Point;
use Moose;

has 'xX' => (isa => 'Int ', dis => 'rw , TeGl1EEue=
has 'y' => (isa == 'Int', is => 'rw' , ECtEEEcl= =1
sub clear {

my Sself = shift;

Sself->x(0);

Sself->y(0);

}

package Point3D;
use Moose;

extends 'Point';

has 'z' =>.(isa =>-%Fnts, is"=> Hrwe; Tl reci =y

after 'clear' => sub {
my $self = shift;
$self->z(0);
ti
package main;
my $pointl = Point->new(x => 5, y => 7);
my S$point2 = Point->new({x => 5, y => 7});
my S$point3d = Point3D->new(x => 5, y => 42, z => -5);

package Document: :Page;
use Moose;
has 'body' => (is == 'rw ', isa => 'Str', defallEEa iR e
sub create {
my S$Sself = shift;
Sself->open page;
inner();
Sself->close page;

}
sub append body ({
my ($self, Sappendage) = @ ;
Sself->body($self->body . Sappendage);
}

sub open page { (shift)->append body('<page>') }
sub close page { (shift)->append body('</page>') }

package Document: :PageWithHeadersAndFooters;
use Moose;

extends 'Document::Page’;

augment 'create' => sub {
my Sself = shift;
Sself->create header;
inner();
Sself->create footer;
}i
sub create header { (shift)->append body('<header/>"') }
sub create footer { (shift)->append body('<footer/>') }

package Point;
use Moose;
use namespace::clean -except => ’‘meta’;

has 'x' => isa => '"Iht Jrds => 'ro
4
has 'y' => (1sa => 'Int', 1s => 'rw

~_ PACKAGE ->meta->make immutable;

e e

use Moose;
extends ‘A::Base::Class’;
with gw (
DoesSomething: :Well
DoesSomething: :Else
DoesSomething::Difficult

) 7

package Breakable;
use Moose: :Role;
has 'is broken' => (
1s "I=>iEEg
isa => 'Bool’,
)
sub break {
my S$Sself = shift;
$Sself->is broken(1l);

package Car;
use Moose;
with 'Breakable’;

has 'engine' => (
1s - =R e
isa => 'Engine'’,

) 7

