
Using Moose to build an Object Oriented Application

The goal of Moose is to increase programmer
productivity by providing “proper” OO syntax
and Object model which are missing from
perl5.
It does the grunt work for you and allows the
programmer to concentrate on the task at
hand.

What is Moose ?

An Example

A “Traditional” OO Perl Class

Package ClassName;
sub new {
 my $class = shift;
 my $self = {
 _an_attribute => shift,
 _another_attribute => shift,
 };

bless $self, $class;
}

package Point;
use Moose;
has 'x' => (isa => 'Int', is => 'rw', required => 1);
has 'y' => (isa => 'Int', is => 'rw', required => 1);
sub clear {
 my $self = shift;
 $self->x(0);
 $self->y(0);
}

package Point3D;
use Moose;

extends 'Point';
has 'z' => (isa => 'Int', is => 'rw', required => 1);

after 'clear' => sub {
 my $self = shift;
 $self->z(0);
};
package main;
my $point1 = Point->new(x => 5, y => 7);
my $point2 = Point->new({x => 5, y => 7});
my $point3d = Point3D->new(x => 5, y => 42, z => -5);

 package Document::Page;
 use Moose;
 has 'body' => (is => 'rw', isa => 'Str', default => sub {''});
 sub create {
 my $self = shift;
 $self->open_page;
 inner();
 $self->close_page;
 }
 sub append_body {
 my ($self, $appendage) = @_;
 $self->body($self->body . $appendage);
 }
 sub open_page { (shift)->append_body('<page>') }
 sub close_page { (shift)->append_body('</page>') }

 package Document::PageWithHeadersAndFooters;
 use Moose;

 extends 'Document::Page';

 augment 'create' => sub {
 my $self = shift;
 $self->create_header;
 inner();
 $self->create_footer;
 };
 sub create_header { (shift)->append_body('<header/>') }
 sub create_footer { (shift)->append_body('<footer/>') }

 package Point;
 use Moose;
 use namespace::clean -except => ‘meta’;

 has 'x' => (isa => 'Int', is => 'ro');
 has 'y' => (isa => 'Int', is => 'rw');

 __PACKAGE__->meta->make_immutable;

 use Moose;
 extends ‘A::Base::Class’;
 with qw (

 DoesSomething::Well
 DoesSomething::Else
 DoesSomething::Difficult
);

 package Breakable;
 use Moose::Role;
 has 'is_broken' => (
 is => 'rw',
 isa => 'Bool',
);
 sub break {
 my $self = shift;
 $self->is_broken(1);
 }

 package Car;
 use Moose;
 with 'Breakable';

 has 'engine' => (
 is => 'ro',
 isa => 'Engine',
);

