
Learning from Others
Solutions to problems inspired by Tech meets like this

one

Problem One

• Need to monitor 12 environments

• Each environment runs on 7 machines

• Each reside in their own Solaris Zone
(Virtual Machine)

• Each run in a dedicated Solaris Role

• So need to monitor processes on 84
different user/machine combinations

Solution Part One

• Set up an NFS partition mounted on all
zones visible to all roles

• Write a script to checkout the status
located on the NFS share and setup CRON
or another scheduler to run the script
repeatedly throughout the day - the script
emails any issues.

Problem Two

• Management want an up-to-date status of
all environments on request and regularly
throughout the day

Solution Two

• Create a Memcached server

• Get the checking script to update
memcached with the status of each
machine

• Use an ajax enabled web page to display
the contents of memcache

Setting up and using a
Memcached Server

Get memcache from http://memcached.org and install it
On the server that you want to run memcached run
memcached -d
Install CPAN module Cache::Memcached

http://memcached.org
http://memcached.org

use Cache::Memcached;

my $memd = new Cache::Memcached {
 servers => [‘192.168.0.1:11211’], # replace with real IP address of memcached server

 debug => 0,
 };
$memd->set(“key”, “some value”);
my $value = $memd->get(“key”);

Notes:
“some value” can be anything - scalar, data structure, object e.t.c
In order to know what keys are available set up a entry with a know key value containing
all the available keys - you can also maintain the last updated timestamp so you know when
to update.
e.g.
my $keys = $mend->get(“allkeys”);
$keys->{“thiskey”} = time();
$mend->set(“allkeys”, $keys);

<html>
 <head>
 <script src="OpenThought.js"></script>
 <script type="text/javascript">
 var c=0; var t; var timer_is_on=0;
 function timedCount()
 {
 OpenThought.CallUrl('/cgi-bin/summary_ajax.pl', 'summary');
 t=setTimeout("timedCount()",5000); # run every 5000 miliseconds (i.e. 5 seconds)
 }
 function doTimer()
 {
 if (!timer_is_on)
 {
 timer_is_on=1;
 timedCount();
 }
 }
 function addLoadEvent(func) {
 var oldonload = window.onload;
 if (typeof window.onload != 'function') {
 window.onload = func;
 } else {
 window.onload = function() {
 if (oldonload) {
 oldonload();
 }
 func();
 }
 }
 }
 addLoadEvent(doTimer);
 </script>
 </head>
 <body>
 <form name="my_form" onSubmit="return false">
 <p id="summary">Summary</p>
 </form>
 </body>
</html>

#!/usr/bin/perl
use strict;
use warnings;
use OpenThought();
use CGI;
my $q = new CGI;
my $params = $q->param(“summary”);
my $OT = OpenThought->new();
my $data;
$data->{summary} = get_summary();
$OT->param($data);
print $OT->response() or warn $!;

sub get_summary {
return <Some HTML to display>;

}

Problem Three

• Need to find a way to start and stop
environments without needing to log in to
7 boxes each time

• Also need to provide controlled access to
50+ developers without giving them full
login access

Several Solutions
• Enable HTTPS on Apache and use the

NTLM Module to authenticate users on
Windows login and then provide selected
access to cgi scripts which do the
necessary work based on login

• Allow access to one server and from there
give access to other boxes via Expect

• Use RPC::PlServer and RPC::PlClient to
enable controlled access to certain actions

Access via Apache

• Lots of setup required e.g. Auth keys for
every user

• Have to maintain who has access to what
somewhere

• No feedback provided until script has
finished so not appropriate for long running
scripts

Using Expect

• Difficult to get right - has tendency to time-
out waiting for a response

• Feedback can be confusing because every
log-in displays a log-in banner so it is hard
to tell if it worked or not

• Error handling is challenging

RPC::PlServer &
RPC::PlClient

• Most flexible and powerful method

• Can provide up-to date feedback via
Memcached

• Easy to tell is it worked or not

• Can be initiated from Perl on Windows

Setting up
RPC::PlServer

#!/usr/bin/perl -T
package Whatever;
use RPC::PlServer;
use base “RPC:;PLServer”;

eval {
 my $server = My->new({
 'configfile' => "Whatever.conf",
 'methods' => {
 'Whatever' => {

NewHandle => 1,
CallMethod => 1,
AnotherMethod => 1

 },
 },
 }) or die "Can't create Server: $!\n";
 $server->Bind() or die "Can't Bind: $!\n";
};
if ($@) {
 warn("Can't create server: $@\n");
 exit(0);
}
~

Config File
{
 'pidfile' => 'somepidfile.pid',
 'facility' => 'daemon',
 'user' => 'user',
 'group' => 'user',
 'localport' => 60009,
 'logfile' => "STDERR",
 'mode' => 'fork', # Recommended for Unix
 'clients' => [
 {
 'mask' => '^10\.214\.11\.179$', # regexp for IP address(es)
 'accept' => 1,
 'users' => ['user1', 'user2', 'user3', 'user4']
 },
 {
 'mask' => '.*', # anything else
 'accept' => 0 # Don’t allow access
 },
]
}

An Example Client
#!/usr/bin/perl
use strict;
use RPC::PlClient;

my $client = RPC::PlClient->new(peeraddr => <Host where Server is running>,
 peerport => 60009,
 application => 'Whatever',
 version => '1.0',
 user => 'user',
) or die "Can't create Client: $!\n";
carp ("Here");
my $object = $client->ClientObject('Whatever', 'new', MXENV => $env) or die "Can't create Client Object $!\n";

Use object handle as if local

